Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
نویسندگان
چکیده
منابع مشابه
Sparse and Low-Rank Tensor Decomposition
Motivated by the problem of robust factorization of a low-rank tensor, we study the question of sparse and low-rank tensor decomposition. We present an efficient computational algorithm that modifies Leurgans’ algoirthm for tensor factorization. Our method relies on a reduction of the problem to sparse and low-rank matrix decomposition via the notion of tensor contraction. We use well-understoo...
متن کاملAlgorithms for Sparse Nonnegative Tucker Decompositions
There is a increasing interest in analysis of large-scale multiway data. The concept of multiway data refers to arrays of data with more than two dimensions, that is, taking the form of tensors. To analyze such data, decomposition techniques are widely used. The two most common decompositions for tensors are the Tucker model and the more restricted PARAFAC model. Both models can be viewed as ge...
متن کاملLow-Rank Regression with Tensor Responses
This paper proposes an efficient algorithm (HOLRR) to handle regression tasks where the outputs have a tensor structure. We formulate the regression problem as the minimization of a least square criterion under a multilinear rank constraint, a difficult non convex problem. HOLRR computes efficiently an approximate solution of this problem, with solid theoretical guarantees. A kernel extension i...
متن کاملTensor Regression Networks with various Low-Rank Tensor Approximations
Tensor regression networks achieve high rate of compression of model parameters in multilayer perceptrons (MLP) while having slight impact on performances. Tensor regression layer imposes low-rank constraints on the tensor regression layer which replaces the flattening operation of traditional MLP. We investigate tensor regression networks using various low-rank tensor approximations, aiming to...
متن کاملParCube: Sparse Parallelizable Tensor Decompositions
How can we efficiently decompose a tensor into sparse factors, when the data does not fit in memory? Tensor decompositions have gained a steadily increasing popularity in data mining applications, however the current state-of-art decomposition algorithms operate on main memory and do not scale to truly large datasets. In this work, we propose ParCube, a new and highly parallelizable method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematics of Data Science
سال: 2020
ISSN: 2577-0187
DOI: 10.1137/19m1299335